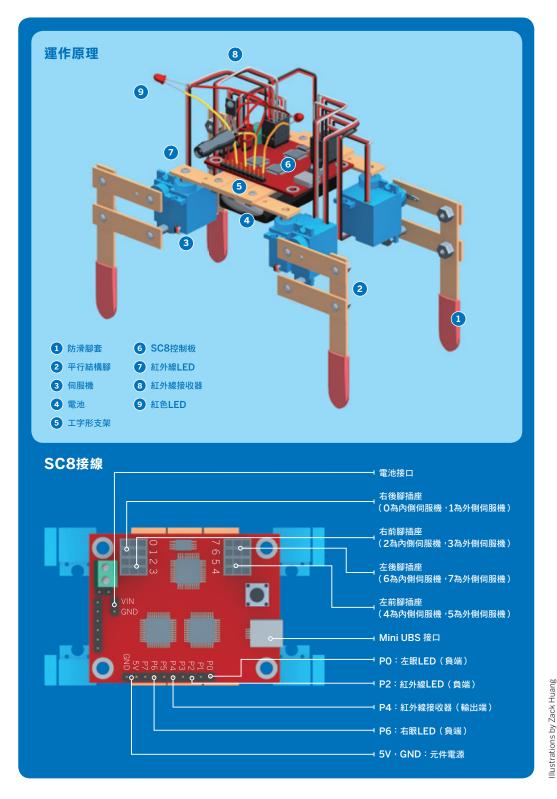

# 小怪獸

文:鮑惟聖



# 仿生機器人——小怪獸

把從便利商店買來吃剩下的冰棒棍,搭配SC8 (Servo Commander 8)控制板——它最多能控制八個通道的傳統R/C伺服機、紅外線LED以及一些隨手可得的零件,就可搖身一變成為動作靈活的「入門級」仿生機器人。


看過許多玩家的機器人作品,我總覺得它們的動作不夠靈活, 而且缺少了智慧性,讓人有種隔靴搔癢、無法盡興的感覺,因此 就興起了自己動手做一臺的念頭。我所做的這臺機器人,除了外 觀酷炫、功能多樣外,還能避開障礙完成指定的任務。

我利用隨處可得的冰棒棍來當作機器人的四肢與身體(支撐控制器的支架),再從「遙控飛機模型店」買八臺8g伺服機當作肌肉、用SC8控制板當作大腦,以及紅外線LED當作眼睛。

這隻我叫它「小怪獸」的四腳仿生機器人,打造完成後,有著兩顆一閃一閃十分討喜的紅色眼睛。它除了可以做伏地挺身外,還能走迷宮。當小怪獸走不出迷宮時,兩顆紅色的眼睛會閃得更快了,並不斷地轉動自己的身體,一副著急想提快找到出口的樣子。以下我將說明如何利用 SC8 來製作這臺可愛的小怪獸。

Set up: p.135 Make it: p.136 Use it: p.141

鮑惟聖,擁有中原大學電機工程學士學位,利基應用科技(www.innovati.com.tw)的創辦人。多年來一直從事微處理 器應用與系統工具的開發,並致力於推廣智慧型機器人科普教育。



**SET UP.** 



### 材料

#### [A] Servo Commander 8(SC8)控制板(1)

購自利基科技網站( www. innovati.com.tw ),新台幣1,600元。

#### [B] 冰棒棍(20)

文具店或工藝店可買到一包 50根的冰棒棍。

### [C] 8g伺服機,附搖臂與螺絲(8)

一般遙控模型店可買到,每 臺約新台幣340元

### [D] 3 φ 的紅色 LED (2)

[E] 5 φ 的紅外線 LED (1)

### [F] 紅外線接收器:

FM-9038LM-5AN (2)

#### [G] 220 Ω 電阻(3)

[H] 各種顏色線,50 cm

[I] 7.4 V 950 mAh 鋰電池(1)

#### [J] 塑膠六角柱: 3 φ, 長度1cm(4)

[K] 3 φ 的塑膠螺絲(18)

[L] 3 o 的塑膠螺帽(30)

[M] 雙面膠10 cm

[N] 魔鬼氈 5 cm 固定電池用。

[0] 束線帶(4)

[P] 5 φ 的塑膠套管 (1)

[Q] 3 cm的熱縮套管(4)

[R] 伺服機隨附螺絲(8)

[S] 2mm的攻牙螺絲(8) 鋰電池(鎳氫電池)充電器

### 工具

直尺

筆

美工刀

鑽孔機

線鋸機

十字螺絲起

尖嘴鉗

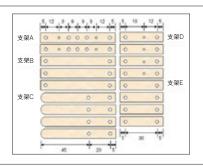
烙鐵與焊料

付螺絲(8) 三用電表

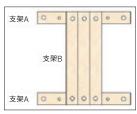
電腦

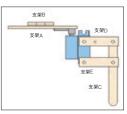
Mini USB訊號線




# 製作您的 小怪獸

開工》

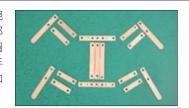

時間:一個週末 難易度:中等


### 1 設計草圖

1a. 先設計草圖



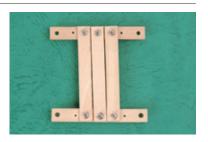
**1b.** 利用這些材料組出「工字形」主支架與「平行結構」四隻腳,基本上這樣骨架就完成了。當然這是我的版本,一旦大家上手之後就可以發揮 DIY 的精神,設計自己的版本,愈有造型就愈有特色。






## 2 裁切與鑽孔

**2a.** 冰棒棍在各個文具行都可以買得到,價格很便宜的。但也可以「物盡其用」,買上兩打冰棒然後找朋友幫忙吃完它,「獨樂樂不如與眾樂樂」這機器人也算是「集體創作」。冰棒棍的長度與鑽孔處,草圖上都畫得很清楚了,冰棒棍到手了就可以開始裁切了。


**2b.**「工欲善其事,必先利其器」,有臺鑽孔機絕對是如虎添翼的,但是如果手邊沒有鑽孔機,那就需要有雙靈巧的雙手了。注意冰棒棍上的2mm圓孔是為了固定伺服機的「搖臂」之用。請注意您手邊的伺服機「搖臂」上的孔距,是否可以鎖上,如有差異,請自行調整2mm圓孔鑽孔位置。



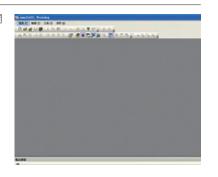
3 組裝「工字形」支架

**3a.** 現在開始組裝,首先是「工字形」的支架,「工字形」的支架下方,會放置電池,「工字形」支架的上方則會放置 SC8 控制板。 為提供較大的承載面積。

**3b.** 「工字形」支架的中間部份是由三條冰棒棍並排組成,共使用 六顆3mm的塑膠螺絲與螺帽固定。



4. 伺服機定位


**4a.** 伺服機(或稱之為舵機)是機器人入門的必備零件,在「遙控飛機模型店」都可以買得到。我這裡的「小怪獸」是採用小型8g伺服機。8g指的是伺服機重量約為8公克。如果仔細找一下還會看到6g、7g、9g的伺服機。除了重量不同外,一般重量越大也代表了扭力比較大。目前「小怪獸」的重量輕,所以扭力影響程度有限。

**4b.** 注意伺服機可以轉動的角度範圍。伺服機可以轉動的角度範圍愈大,足部可以伸展的範圍就愈大。一般伺服機都可以達到60度,所以後續的動作都以60度為應用範圍。還有,不要用手大力或快速去轉動伺服機,這樣會很容易造成齒輪崩牙。

**4c.** 伺服機買到手之後,對第一次玩機器人的朋友來說,必須先了解伺服機的「定位」問題,這是需要花點心思的。首先從組裝的角度來看,伺服機分成主體上的「動力輸出軸」,以及外加的「搖臂」塑膠件。主體上的「動力輸出軸」可以轉動的範圍是個「絕對」範圍。如何將這「絕對」範圍,因應機構需要,變成「相對」的範圍,那就要靠「搖臂」的安裝了。有些事情就是愈聽愈糊塗,親自把玩一下就茅塞頓開。

**4d.** 伺服機定位的目的就是將伺服機動力輸出軸,轉到我們希望的角度位置。一般會是中間位置,這樣我們就可以獲得相同的的正反轉範圍。市面上有伺服機角度設定的小儀器,使用起來很方便,如果預算可以的話,值得去買一個,很多場合都用得到。但是省錢的方法,就直接安裝InnoBASIC Workshop 2系統,使用內建的「動作編輯器」完成定位的工作。

**4e.** 到官網下載InnoBASIC Workshop 2安裝軟體,安裝完畢開 啟該軟體。



4

4f. 找一條 Mini USB 訊號線連接 SC8 控制板與電腦。當電腦偵測到 SC8 控制板就會開始 USB 驅動程式安裝程序。只要按照電腦畫面指示,幾個步驟後就完成 USB 驅動程式安裝。如果電腦無法偵測到 SC8 控制板,請檢查一下是否拿到的不是 USB 訊號線,而是 USB 充電纜線。

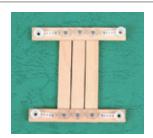


**4g.** 如果一切都順利,請在「工具」選單中啟動「動作編輯器」,開始初始設定畫面。由於「小怪獸」不是標準產品,請選擇「預設值」。並在使用模組區選擇Servo Commander 8。

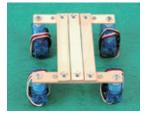


**4h.** 設定完成後就會有就會出現「動作編輯器」主畫面。在每個 通道(CH)的前方都有一的核取方塊 (check box),想要使用到的 通道就去點選它。我們就先選CHO,同時把想要定位的伺服機插到 SC8 控制板的 CHO接口上。通常伺服機線為黑、紅、白三種顏色,分別代表電源(一)、電源(+)、訊號線,而且電源(+)在 中間。安裝伺服機線時請注意顏色方向。

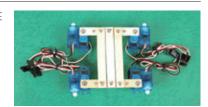



4i. 現在 SC8 控制板是使用 USB 電源,雖然伺服機是插到 SC8 控制板上,但是 SC8 控制板只送出控制訊號,各個伺服機的電源則需另外提供, SC8 控制板只是將電源引到伺服機接口處,並未做任何穩壓控制。換句話說,外部電源的電壓是直接通到伺服機,所以一定要注意外部電源電壓與伺服機操作電壓的匹配問題。 現在我們就來看看電池的問題。又要重量輕又要電流夠大,鋰電池通常會是最佳人選了。但是缺點是電壓高了些,規格上為 7.4 V。如果伺服機的工作電壓較低,有可能沒有工作多久就會燒毀了。 選用 5 個電池的「鎳鍋」或「鎳氫」充電電池,則可較符合 6 V 規格,缺點則是稍微重了些。電池可使用魔鬼氈黏貼於「工字形」支架下方,這樣方便取下充電。每次裝上電池時注意不要影響到伺服機的轉動,另外儘量將電池的重心調整到「小怪獸」的正中央讓四隻腳平均受力,否則行走時會有跛腳現象。




**4j.** 現在試著調整動作編輯器裡 CHO 的捲軸或數值,觀察伺服機轉動的狀況。新手可以利用這個機會第一次觀察伺服機轉動與數值設定的關係。將八個伺服機輪流插拔到 CHO,就完成伺服機定位的工作了。如果伺服機上已經有裝上「搖臂」,將它先卸下再來做定位比較好。定位好的伺服機小心不要再去轉動它。好了!電腦可以先關掉了,我們會有一段時間用不到電腦。

# 5 安裝伺服機


**5a.** 使用 2 mm 攻牙螺絲將四支「搖臂」固定到「工字形」支架下方。



**5 b.** 使用伺服機所提供的螺絲,將四個伺服機與「搖臂」結合。注意在結合的過程中不要轉動到伺服機的軸,最後再使用所附的螺絲將其鎖緊。此時伺服機、搖臂、「工字形」支架的相對位置已固定,如果不小心轉動到伺服機,只要將它輕輕轉回即可。



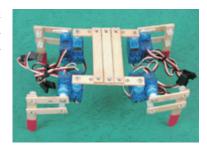
**5c.** 接著使用3M雙面膠,將伺服機以90度直角互相黏合。現在四隻腳已經可以前後、上下轉動了,八個自由度就完成了。



### 6 安裝平行結構腳

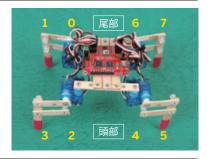
**6a.** 平行結構最主要的目的在保持足部與地面垂直,獲得較好的運動形式,同時分散伺服機輸出軸的力距 到平行結構上,減少受損機率。

**6 b.** 伺服機動力輸出軸當然是平行結構的支點,平行結構的另一個支點,則是使用長度1公分的塑膠柱鎖在伺服機的固定孔做為第二個支點,一般8g伺服機結構類似,應該都可以適用。




**6 c.** 連桿部份目前的設計是使用塑膠螺絲,另一端則是連續鎖上二個螺帽,以固定螺帽位置以免螺帽鬆脱。如何將冰棒棍結合在一起,不能太緊導致轉動不易,又不能太鬆變得結構鬆散,就要靠調整這二個螺帽的位置了。

6d. 伺服機的「搖臂」則以2mm攻牙螺絲鎖到平行結構上。




**6e.** 最後使用伺服機所提供的螺絲將平行結構鎖到伺服機上。注 意在結合的過程中不要轉動到伺服機的軸。鎖緊「平行結構」腳之 後,足部支架的相對位置已固定,如果不小心轉動到伺服機,只 要將它輕輕轉回即可。其他三隻腳以相同的方式安裝之。



### - 安裝SCS控制板

7a. 使用海綿雙面膠把 SC8 控制板固定在「工字形」支架上方。 請注意,SC8控制板下緣的一排針腳就是輸出入腳的位置。由於 最後會把感測器放到這裡,所以SC8控制板下緣應朝向前方,我 們將它定義為「頭部」。SC8控制板可以控制最多八個伺服機,分 別標示為 CHO ~ CH7。



**7b.** 八個伺服機的依編號插至 SC8 控制板,插裝時並注意接頭顏色方向。安裝完成後線材凌亂可以使用束 線帶整理。

### NOTE: SC8 (Servo Commander 8)的使用手册:

http://www.innovati.com.tw/website/down/html/?151.html

### 完工! X

現在就開始使用 >>>

### **USE IT**



# 翻滾吧「小怪獸」!

### 讓小怪獸來個伏地挺身

基本上到目前「小怪獸」的硬體算是完成了。原 來規劃還有LED與紅外線感測器部分,我們等到 「小怪獸」可以行走了之後再來加裝。現在請開啟 InnoBASIC Workshop 2環境,到「動作編輯器」 的主畫面(圖A)。機器人最基本的行走原理就類似 早期的卡通影片,將許多的靜態畫面連續播放,就 形成了動態的畫面。這時候如何正確而精準地將一 個動作拆成幾個分解動作,就是機器人運動能力優 劣的關鍵了。現在就先讓「小怪獸」學會暖身來個 「伏地挺身」吧。我把「伏地挺身」分成二個分解動 作。第一就是標準站姿,第二就是腹部貼近地面。 目前畫面上所顯示的初始值都是1500,也正好就是 我們所要的標準站姿,注意要先將所有的核取盒打 勾, 這樣才有啟動控制功能。接著我們就直接按下 「儲存」鍵,將此動作儲存到SC8控制板裡。

### 微調的重要性

通常這時候就會發現明明每個伺服機都按照要 求設成1500的位置,但站姿好像不是很正,左看 右看每個伺服機都想給它調整一下,這時候我們就 需要做「微調」了(圖B)。造成這各現象的原因 有二:第一,伺服機輸出軸與「搖臂」結合處的齒 數是有限的,所以不論如何鎖,一定會有機械性的 角度誤差;第二,整體性的機構偏差,例如支架歪 斜,使得我們必須靠「微調」來補償機構上的偏差。 動作編輯器主畫面的右上角有「設定微調值」的按 鍵,按下後即可進入「設定微調值」的主畫面。其 中可以進行微調的通道,即為剛才所核取的通道。 基本操作方式與動作設定相同,只是數值範圍較小 從-128到+127。邊微調邊觀察伺服機是否轉動到 要求的位置了。常各通道微調值設定好了之後,記 得要按下「儲存到模組」按鍵,目前的設定值才會







Make: 141

圖A:儲存編號O的

圖B:微調操作畫面 圖C:儲存編號1的分

分解動作。

解動作。

制板會發現微調值還是舊的。現在大家了解「微調」 的用處之後,我們繼續剛才的動作設定。

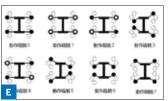
(M) (M) (M) (M) (M)

### 完成伏地挺身的動作設定

接著我們要調整出第二個動作,讓身體貼近地 面。其實只要轉動外側的四個伺服機就可以了。現 在請慢慢拉動 CH1、CH3、CH5、CH7 的捲軸或填 入數值。這時候就可以觀察是否有符合您的動作要 求。這裡我使用的位置是1200與1800,從中心位 置前後大約擺動各30度。因為伺服機安裝的方向不 同,左前腳與右後腳會是同一個數值,右前腳與左 後腳會是另一個數值。動作若是一致的,就是要降 低身體高度。如果覺得姿態沒問題就先將畫面左上 正式被儲存到SC8控制板,否則下次使用SC8控 方的動作編號改成1(圖C),然後按下「儲存」鍵,

將此動作儲存到SC8控制板裡。

每次儲存新的動作時一定要記得改變動作編號, 否則之前所設計的動作就會被覆蓋掉了。因為你所 設計的動作都儲存在SC8控制板裡,如果想檢視某 一個編號的動作,只要改按「讀取」鍵,並輸入動 作編號,例如編號O。這時候「小怪獸」就會呈現原 先設定的站立姿態了。好了,動作設定完成,現在 開始寫程式吧。


### 開始寫程式

首先從「檔案」/「開新檔案」選單之下開啟一個新檔案,然後輸入下列程式。單引號「'」之後的文字稱之為「註解」,方便自己或他人閱讀程式之用,對程式執行沒有任何影響。練習的時候如果想省事,「註解」的部份是可以省略。但是正式寫程式的時候可千萬別偷懶,否則現在引以為傲的「武功祕笈」下次在閱讀時,套句俏皮話,就變成諸葛亮的「出師表」,「臨表涕泣,不知所云」了。



程式輸入完畢之後(圖D),請在「建立」選單中選取「建立」功能然後開始進行程式編譯與通過USB線下載編譯後的程式碼至SC8控制板。此時「小怪獸」就會每秒一次「上」或「下」進行「伏地挺身」,而且因為For...Next指令的指定,「小怪獸」將會執行5次「伏地挺身」。





| 807     | СНО  | СНІ  | СНФ  | снв  | CH4  | CH5  | СНБ  | СНТ  |
|---------|------|------|------|------|------|------|------|------|
| Frame 0 | 1500 | 1500 | 1500 | 1500 | 1500 | 1500 | 1500 | 1500 |
| Frame 1 | 1500 | 1200 | 1500 | 1800 | 1500 | 1200 | 1500 | 1800 |
| Frame 2 | 1500 | 1500 | 1500 | 1800 | 1500 | 1500 | 1500 | 1800 |
| Frame 3 | 1800 | 1500 | 1200 | 1500 | 1200 | 1500 | 1800 | 1500 |
| Frame 4 | 1500 | 1200 | 1500 | 1500 | 1500 | 1200 | 1500 | 1500 |
| Frame 5 | 1200 | 1500 | 1800 | 1500 | 1800 | 1500 | 1200 | 1500 |
| e       | 1800 | 1500 | 1200 | 1500 | 1800 | 1500 | 1200 | 1500 |
| F       | 1200 | 1500 | 1800 | 1500 | 1200 | 1500 | 1800 | 1500 |

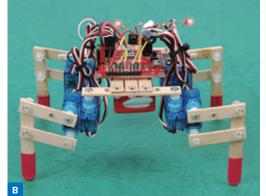
圖D:編譯與下載程式。圖E:八個分解動作圖解。圖F: 八個分解動作伺服機對應數值。

好啦! 伏地挺身還算是簡單,我們現在開始設計步行的動作。原則上愈多分解動作可以達成較好的平衡性與流暢度。但是既然是「入門級」的機器人,步態設計還是以簡單易懂為原則。這裡就整理出八個分解動作,經由不同的分解動作組合,可以做出前進、後退、轉彎等動作。下面就是這八個動作的示意圖。首先大家會注意到每隻腳都有對應到三個圓圈,說明足部是在「前」、「中」、「後」哪個位置,這些位置是由內側伺服機控制。虛線的圓圈只是方便辨識相對位置,實際落腳會以一個「實心圓」與「空心圓」分別表示不同高度,這些高度是由外側的伺服機控制,圖的上方為頭部的方向(圖E)。

高度可以有「上」、「中」、「下」三個位置,但是目前為止動作規劃還沒有使用到「上」的位置。所以大家有進一步的動作規劃時,可以再加入「上」的位置。為了方便動作設定,這裡就一併把設定這些動作所需要的伺服機位置數值,建成一張表給各位參考。各位就依照前面伏地挺身的動作設計方法(圖F),把剩下的動作2到動作7儲存到SC8控制板裡面。

#### 網站連結:

動作編輯器 (Motion Editor )使用介紹: http://www.innovati.com.tw/website/down/html/?43.html


■ BASIC Commander & InnoBASIC Workshop 使用手冊: http://www.innovati.com.tw/website/ down/html/?33.html

■ InnoBASIC Workshop 2 安裝程式: http://www.innovati.com.tw/website/down/html/?113.html



# 去探索吧 小怪獸!





圖G:LED、紅外線發射器、紅外線實際接線圖。圖H:「小怪獸」完成圖。

### 加裝LED與紅外線感測器

現在「小怪獸」已經可以靈活的動作了,來一段 有趣的舞蹈也是不難事。前面有提到我們想替「小 怪獸」裝二個LED與紅外線感測器(圖A),讓它 看起來更酷更聰明,現在就繼續努力吧!

首先介紹元件工作原理,大家可以對照之前SC8 接線安裝圖。LED有二隻腳,長腳為正極,短腳 為負極。長腳串接一個220歐姆的電阻到5V,電 阳的色碼為紅紅棕。LED的短腳再分別接到數位 輸入輸出腳PO與P6。PO與P6的選擇是為了方便 LED安裝在左右兩邊,沒有其他考量。再來就是安 裝紅外線發射器。這裡所使用到的就是一個紅外線 LFD,顧名思義,它也是一個LFD。只不過發射出 來的是不可見的紅外線,所以對LFD的描述也適 用。這裡我們把它接到P2。紅外線接收器是一個三 隻腳的元件,我這裡使用的編號為FM-9038LM-5AN。分別為正、負電源以及輸出腳。正、負電源 就分別接到5V以及GND,輸出腳則接到P4腳。 紅外線LED與紅外線接收器同樣面向前方,但是紅 外線會從LED側面散出,而被紅外線接收器收到, 造成誤認前方有障礙物。為避免紅外線散出,這裏 使用了膠套將紅外線LED包起來,僅允許從前方發 射紅外線出去。各位手邊沒有適用的膠套,則可以 使用黑色電工膠帶將LED纏繞,僅留前方開口即 可。目前使用到的PO、P2、P6都是做輸出使用, 只有p4是做輸入使用。(圖A)為了方便辨識,特 別將須接到5V的線路選用紅色線材,須接到GND 的線路選用黑色線材,須接到各I/O接腳的線路選 用黃色線材。實際接線時要注意避免金屬部分碰 觸造成短路,所以電工膠帶或是塑膠套管都是需要

雖然線路是相同的,但每一個人實際的接線看起 來都會不太一樣,美醜就看每個人的藝術細胞有多 少啦。我給每隻腳套上紅色的熱縮套管,再加熱使 其收縮而不會掉落,穿上四隻小紅鞋看起來還很有 造型,而且還有防滑的功效呢,希望對我的藝術細 胞有加分作用,完成品請看(圖B)。

### 「小怪獸探索」的程式

現在開始要把感測器的輸入與動作結合,前面的程式只是練習題,現在才是正式開始撰寫「小怪獸探索」程式。這裡先介紹一下「小怪獸」的行為模式。開啟電源後「小怪獸」會先點亮LED雙眼,維持標準站姿五秒。接著做兩個「伏地挺身」暖身一下準備出發。

「小怪獸」會隨時測量前方是否有障礙物,LED雙眼也保持每秒明滅一次的速度眨眼。一旦發現障礙物則停止前進,然後原地左轉,再次測量前方是否有障礙物,這段期間LED雙眼以兩倍的速度明滅,讓它看起來很焦慮的樣子。如果前方依舊測量到有障礙物,則持續作左轉測量的動作,直到障礙物消失,然後繼續前進,LED雙眼也恢復每秒明滅一次的眨眼速度。這裡的障礙物偵測距離大概是30公分,調整偵測距離的方法以後有機會再來介紹。

以下就是程式原始碼,後面有註解説明。此程

式只使用到幾個副程序,提高程式閱讀性,方便入 門者了解程式控制之原理。等到熟悉相關程式技巧 後,可以嘗試更結構化的程式架構,以減少程式行 數、提高執行效率,增加程式維護、修改的彈性。

```
' 小怪獸探索程式
Peripheral mySer As ServoRunner8A @ 0
                               '預設內建
模組ID為o
Sub OpenEyes()
 Low 0
               '點亮左眼LED
 Low 6
               '點亮右眼LED
End Sub
Sub CloseEyes()
 High 0
               ' 熄滅左眼LED
 High 6
               ' 熄滅右眼LED
End Sub
Sub RunFrame(ID As Byte)
 Myser.LoadFrame(ID) ' 載入編號ID的動作
 Myser.Runallservo() '執行載入的動作
 Pause 150
               '等待伺服機完成動作(每秒4步)
End Sub
Sub Main()
  Dim IR As Byte '宣告變數
'點亮左右眼LED以及初始立正姿勢
               '點亮雙眼LED
 OpenEyes()
 RunFrame(0)
               ' 呼叫程序執行編號o動作
               ' 等待5秒才開始動作
 Pause 5000
' 伏地挺身一次
 RunFrame(1)
               '呼叫程序執行編號1動作
 RunFrame(0)
               ' 呼叫程序執行編號o動作
 RunFrame(1)
               ' 呼叫程序執行編號1動作
 RunFrame(0)
               ' 呼叫程序執行編號0動作
 Pause 2000
               ' 等待2秒才開始出發
'_____
' 程式主循環
  Sound(2, 5, 38400) ' 從第2腳發射5微秒的38.4kHz紅
外線載波
  IR = In(4)
               '從第4腳讀取紅外線載波資料
```

' 發現障礙物向左轉, 左前足起

```
步左轉: [4,6,2,7]
                 ' 呼叫程序執行編號4動作
    RunFrame(4)
    CloseEyes()
    RunFrame(6)
                 ' 呼叫程序執行編號6動作
    OpenEyes()
                 ' 呼叫程序執行編號2動作
    RunFrame(2)
    CloseEyes()
    RunFrame(7)
                 ' 呼叫程序執行編號7動作
    OpenEyes()
   Else
                 ' 未發現障礙物, 右前足起步前
行 [2,5,4,3]
                 ' 呼叫程序執行編號2動作
    RunFrame(2)
    RunFrame(5)
                 ' 呼叫程序執行編號5動作
    CloseEyes()
                ' 呼叫程序執行編號4動作
    RunFrame(4)
                 ' 呼叫程序執行編號3動作
    RunFrame(3)
    OpenEyes()
   End If
  Loop
End Sub
```

程式輸入完畢之後,請在「建立」選單中選取「建立」功能進行程式編譯,並通過USB線下載編譯後的程式碼至SC8控制板。此時「小怪獸」不再只是會做「伏地挺身」而已。這樣的程式流程已經讓「小怪獸」具有從迷宮脫困的基本能力。大家完成程式之後,可以嘗試定義一下更複雜的流程。原則上更複雜的流程可以讓「小怪獸」以更聰明的方法從迷宮中脱困。或者加上更多的感測器,讓「小怪獸」可以更快速地感測周邊環境,做出更有效率的決策。這時候大家就來辦個「走迷宮競賽」,誰的「小怪獸」厲害,高下立判。

文章接近尾聲了,當我把功能驗證完畢之後,心情剎時輕鬆了起來。拿幾個紙盒當成路障,把書房的燈給轉暗,再啟動我的「小怪獸」。閃爍的LED光影、「嘎嘎」的伺服機轉動聲、踽踽獨行的身影,我彷彿看到「小怪獸」在火星上獨自探索。We are programmed to explore! 這就是機器人DIY的樂趣。當我神遊在自己的異想世界裡,「小怪獸」已經從紙盒做的「八卦陣」裡走了出來,我彷彿聽到「小怪獸」在說:What's next?

#### 網站連結:

■「小怪獸」探索影片: http://www.innovati.com. tw/website/index.php

If IR = 0 Then